

Upgraded scenarios <u>FOR</u> integration of biofuel value chains into <u>REFINERY</u> processes

• Presenter: Silje Fosse Håkonsen, SINTEF

HTL Expert Workshop, Brussels 19 November 2019

Background

RED II proposal: transition from first generation biofuels to advanced biofuels

- Advanced biofuels have the potential to help achieve the EU climate and energy goals
- Flexibility in feedstock utilization and conversion technology application is an advantage
- To achieve the climate goals, significant investments in advanced biofuels capacity are needed
- R&I can drive down costs, but can also create knock-on effects

1200 1000 Sustainable biomass availability yr⁻¹) matter 800 1111411111 107 (million ton dry 102 600 92 69 57 389 400 384 286 286 291 200 238 219 166 173 149 0 High R&I Reference Reference Reference High R&I 2020 2050 2030 2030 2050 Agriculture Forestry Waste NAquatic

Figure 2 Estimated potential: the figure shows the availability of sustainable biomass for energy use in the EU for the reference and high R&I scenario

European Union's Horizon 2020 research and innovation programme, GA No. 727531

4Refinery Scheme

Integration of bio-liquids in refinery

- The approach of 4REFINERY allows to evaluate the viability of integration of upgraded bio-liquids in standard refining conversion processes, technical and economical feasibility: TEA and LCA analysis, impact in yields, process conditions in existing processes, consumption of utilities, catalyst cycle length, etc.
- The integration of bio-liquids in refinery take advantage of:
 - Available throughput in refining units
 - Similar catalysts to conventional processes
 - Similar operating conditions
 - No changes in materials of existing infrastructure
 - Minor modifications and investments in the existing refineries

4Refinery Vision

Low Scale-up Design capital costs Process [Efficiency Energy I

Business case development

- **TRL assessment** Aims to systematically assess the maturity of the technologies
- Supply chain and market assessment Aims to characterise a reliable supply chain with a robust route to market for the product(s)
- Risk assessment and identification of mitigation measures Aims to provide insight into project risks, relative importance of each and means of handling risks
- Identification of outputs and exploitation Exploitation plan identifying exploitable results by each partner, type of exploitation and most suitable platform for action

4REFINERY KPIs

Thank you for your attention!

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727531