

THE UNIVERSITY

SouthernOil

Southern Oil Refining

HYDROTHERMAL LIQUEFACTION OF MUNICIPAL WASTEWATER SLUDGE

adelaide.edu.au

Sunded by ARENA S12.29m Total project cost

Project overview		
Lead Organisation Southern Oil Refining Pty Ltd Location Gladstone, Queensland ARENA Program Advancing Renewables	Start Date April 2019 Status Current	Project Partners Melbourne Water Corporation, Queensland Urban Utilities

- To develop continuous processes for HTL of municipal wastewater sludge that optimise separation, yield and quality of renewable crude
- Economic reality (presently) an acceptable RoI (<5 year payback) would require a tipping fee of \$160/dry tonne
- Need to valorise all product streams

- To quantify the affect of polymer on the renewable crude oil composition and aqueous fraction under continuous HTL operation
- What is the optimum re-circulation conditions of the aqueous phase for subsequent feed preparation that achieves optimum renewable crude yield in terms of quality and quantity?

• What is the optimum blow-down rate for removing the recycled aqueous fraction and the subsequent characteristics of the resultant fraction for anerobic digestion (AD) treatment?

• Details biological and chemical characterisation on the resultant renewable crude oil and aqueous fraction composition of each re-circulation cycle?

- HTL renewable crude is not close enough to fuel oil properties.
- Nitrogen and sulphur content, instability due to high acidity, high viscosity and high char yields, are limiting its application.
- Development of suitable catalysts are needed that can produce renewable crude of sufficient quality and to limit formation of aqueous and solid phase organics.

• Valorisation of the aqueous phase to produce biogas via AD treatment, and solid phase:

• Is coagulation treatment using aluminium sulphate $(Al_2(SO_4)_3)$ able to remove the accumulated toxic and rate limiting compounds (e.g. phenols and cyclic hydrocarbons) prior to anaerobic digestion?

• What is the optimum concentration of $Al_2(SO_4)_3$ required?

• What is the biogas yield produced from AD treatment of the aqueous fraction?

• What is the raw and final composition of the aqueous phase treated by AD treatment?

• Can the resultant AD digestate be recycled to the HTL feed? This to minimizes the level of waste handling required as part of commercialisation of this process

Downstream solids composition

• To develop a piping system integrity monitoring technique that can overcome the fundamental challenges of existing techniques by achieving non-destructive evaluation (NDE) of early damage and noncontact inspection for high temperature and high-pressure metallic pipes.

Slide 8

Status

- Q1-Q3 2019 FEED Completed
- Q4 2019 Detailed design commenced
- Q1 2020 Construction
- Q2 2020 Commissioning

Impact and commercialisation